
Hence, recording and compiling a trace speculates that the path and
typing will be exactly as they were during recording for subsequent
iterations of the loop.

Every compiled trace contains all the guards (checks) required
to validate the speculation. If one of the guards fails (if control
flow is different, or a value of a different type is generated), the
trace exits. If an exit becomes hot, the VM can record a branch
trace starting at the exit to cover the new path. In this way, the VM
records a trace tree covering all the hot paths through the loop.

Nested loops can be difficult to optimize for tracing VMs. In
a naı̈ve implementation, inner loops would become hot first, and
the VM would start tracing there. When the inner loop exits, the
VM would detect that a different branch was taken. The VM would
try to record a branch trace, and find that the trace reaches not the
inner loop header, but the outer loop header. At this point, the VM
could continue tracing until it reaches the inner loop header again,
thus tracing the outer loop inside a trace tree for the inner loop.
But this requires tracing a copy of the outer loop for every side exit
and type combination in the inner loop. In essence, this is a form
of unintended tail duplication, which can easily overflow the code
cache. Alternatively, the VM could simply stop tracing, and give up
on ever tracing outer loops.

We solve the nested loop problem by recording nested trace
trees. Our system traces the inner loop exactly as the naı̈ve version.
The system stops extending the inner tree when it reaches an outer
loop, but then it starts a new trace at the outer loop header. When
the outer loop reaches the inner loop header, the system tries to call
the trace tree for the inner loop. If the call succeeds, the VM records
the call to the inner tree as part of the outer trace and finishes
the outer trace as normal. In this way, our system can trace any
number of loops nested to any depth without causing excessive tail
duplication.

These techniques allow a VM to dynamically translate a pro-
gram to nested, type-specialized trace trees. Because traces can
cross function call boundaries, our techniques also achieve the ef-
fects of inlining. Because traces have no internal control-flow joins,
they can be optimized in linear time by a simple compiler (10).
Thus, our tracing VM efficiently performs the same kind of op-
timizations that would require interprocedural analysis in a static
optimization setting. This makes tracing an attractive and effective
tool to type specialize even complex function call-rich code.

We implemented these techniques for an existing JavaScript in-
terpreter, SpiderMonkey. We call the resulting tracing VM Trace-
Monkey. TraceMonkey supports all the JavaScript features of Spi-
derMonkey, with a 2x-20x speedup for traceable programs.

This paper makes the following contributions:

• We explain an algorithm for dynamically forming trace trees to
cover a program, representing nested loops as nested trace trees.

• We explain how to speculatively generate efficient type-specialized
code for traces from dynamic language programs.

• We validate our tracing techniques in an implementation based
on the SpiderMonkey JavaScript interpreter, achieving 2x-20x
speedups on many programs.

The remainder of this paper is organized as follows. Section 3 is
a general overview of trace tree based compilation we use to cap-
ture and compile frequently executed code regions. In Section 4
we describe our approach of covering nested loops using a num-
ber of individual trace trees. In Section 5 we describe our trace-
compilation based speculative type specialization approach we use
to generate efficient machine code from recorded bytecode traces.
Our implementation of a dynamic type-specializing compiler for
JavaScript is described in Section 6. Related work is discussed in
Section 8. In Section 7 we evaluate our dynamic compiler based on

1 for (var i = 2; i < 100; ++i) {
2 if (!primes[i])
3 continue;
4 for (var k = i + i; i < 100; k += i)
5 primes[k] = false;
6 }

Figure 1. Sample program: sieve of Eratosthenes. primes is
initialized to an array of 100 false values on entry to this code
snippet.

Interpret 
Bytecodes

Monitor 

Record
LIR Trace

Execute 
Compiled Trace

Enter 
Compiled Trace

Compile
LIR Trace

Leave 
Compiled Trace

loop 
edge

hot
loop/exit

abort 
recording

finish at 
loop header

cold/blacklisted
loop/exit

compiled trace 
ready

loop edge with 
same types

side exit to 
existing trace

side exit,
no existing trace

Overhead 

Interpreting

Native

Symbol Key

Figure 2. State machine describing the major activities of Trace-
Monkey and the conditions that cause transitions to a new activ-
ity. In the dark box, TM executes JS as compiled traces. In the
light gray boxes, TM executes JS in the standard interpreter. White
boxes are overhead. Thus, to maximize performance, we need to
maximize time spent in the darkest box and minimize time spent in
the white boxes. The best case is a loop where the types at the loop
edge are the same as the types on entry–then TM can stay in native
code until the loop is done.

a set of industry benchmarks. The paper ends with conclusions in
Section 9 and an outlook on future work is presented in Section 10.

2. Overview: Example Tracing Run
This section provides an overview of our system by describing
how TraceMonkey executes an example program. The example
program, shown in Figure 1, computes the first 100 prime numbers
with nested loops. The narrative should be read along with Figure 2,
which describes the activities TraceMonkey performs and when it
transitions between the loops.

TraceMonkey always begins executing a program in the byte-
code interpreter. Every loop back edge is a potential trace point.
When the interpreter crosses a loop edge, TraceMonkey invokes
the trace monitor, which may decide to record or execute a native
trace. At the start of execution, there are no compiled traces yet, so
the trace monitor counts the number of times each loop back edge is
executed until a loop becomes hot, currently after 2 crossings. Note
that the way our loops are compiled, the loop edge is crossed before
entering the loop, so the second crossing occurs immediately after
the first iteration.

Here is the sequence of events broken down by outer loop
iteration:


